Wednesday, 6 March 2019

Spring Bean scopes

When you create a bean definition what you are actually creating is a recipe for creating actual instances of the class defined by that bean definition. The idea that a bean definition is a recipe is important, because it means that, just like a class, you can potentially have many object instances created from a single recipe.
You can control not only the various dependencies and configuration values that are to be plugged into an object that is created from a particular bean definition, but also the scope of the objects created from a particular bean definition. This approach is very powerful and gives you the flexibility to choose the scope of the objects you create through configuration instead of having to 'bake in' the scope of an object at the Java class level. Beans can be defined to be deployed in one of a number of scopes: out of the box, the Spring Framework supports exactly five scopes (of which three are available only if you are using a web-aware ApplicationContext).

The scopes supported out of the box are listed below:

Table . Bean scopes
ScopeDescription
singleton
Scopes a single bean definition to a single object instance per Spring IoC container.
prototype
Scopes a single bean definition to any number of object instances.
request
Scopes a single bean definition to the lifecycle of a single HTTP request; that is each and every HTTP request will have its own instance of a bean created off the back of a single bean definition. Only valid in the context of a web-aware Spring ApplicationContext.
session
Scopes a single bean definition to the lifecycle of a HTTP Session. Only valid in the context of a web-aware SpringApplicationContext.
global session
Scopes a single bean definition to the lifecycle of a global HTTP Session. Typically only valid when used in a portlet context. Only valid in the context of a web-aware Spring ApplicationContext.

The singleton scope

When a bean is a singleton, only one shared instance of the bean will be managed, and all requests for beans with an id or ids matching that bean definition will result in that one specific bean instance being returned by the Spring container.
To put it another way, when you define a bean definition and it is scoped as a singleton, then the Spring IoC container will create exactly one instance of the object defined by that bean definition. This single instance will be stored in a cache of such singleton beans, and all subsequent requests and references for that named bean will result in the cached object being returned.
Please be aware that Spring's concept of a singleton bean is quite different from the Singleton pattern as defined in the seminal Gang of Four (GoF) patterns book. The GoF Singleton hard codes the scope of an object such that one and only one instance of a particular class will ever be created per ClassLoader. The scope of the Spring singleton is best described as per container and per bean. This means that if you define one bean for a particular class in a single Spring container, then the Spring container will create one and only one instance of the class defined by that bean definition. The singleton scope is the default scope in Spring. To define a bean as a singleton in XML, you would write configuration like so:
<bean id="accountService" class="com.foo.DefaultAccountService"/>

<!-- the following is equivalent, though redundant (singleton scope is the default); using spring-beans-2.0.dtd -->
<bean id="accountService" class="com.foo.DefaultAccountService" scope="singleton"/>

<!-- the following is equivalent and preserved for backward compatibility in spring-beans.dtd -->
<bean id="accountService" class="com.foo.DefaultAccountService" singleton="true"/>

 The prototype scope

The non-singleton, prototype scope of bean deployment results in the creation of a new bean instance every time a request for that specific bean is made (that is, it is injected into another bean or it is requested via a programmatic getBean() method call on the container). As a rule of thumb, you should use the prototype scope for all beans that are stateful, while the singleton scope should be used for stateless beans.
The following diagram illustrates the Spring prototype scope. Please note that a DAO would not typically be configured as a prototype, since a typical DAO would not hold any conversational state; it was just easier for this author to reuse the core of the singleton diagram.
To define a bean as a prototype in XML, you would write configuration like so:
<!-- using spring-beans-2.0.dtd -->
<bean id="accountService" class="com.foo.DefaultAccountService" scope="prototype"/>

<!-- the following is equivalent and preserved for backward compatibility in spring-beans.dtd -->
<bean id="accountService" class="com.foo.DefaultAccountService" singleton="false"/>
There is one quite important thing to be aware of when deploying a bean in the prototype scope, in that the lifecycle of the bean changes slightly. Spring does not manage the complete lifecycle of a prototype bean: the container instantiates, configures, decorates and otherwise assembles a prototype object, hands it to the client and then has no further knowledge of that prototype instance. This means that while initialization lifecycle callback methods will be called on all objects regardless of scope, in the case of prototypes, any configured destruction lifecycle callbacks will not be called. It is the responsibility of the client code to clean up prototype scoped objects and release any expensive resources that the prototype bean(s) are holding onto. (One possible way to get the Spring container to release resources used by prototype-scoped beans is through the use of a custom bean post-processor which would hold a reference to the beans that need to be cleaned up.)
In some respects, you can think of the Spring containers role when talking about a prototype-scoped bean as somewhat of a replacement for the Java 'new' operator. All lifecycle aspects past that point have to be handled by the client.

 Singleton beans with prototype-bean dependencies

When using singleton-scoped beans that have dependencies on beans that are scoped as prototypes, please be aware that dependencies are resolved at instantiation time. This means that if you dependency inject a prototype-scoped bean into a singleton-scoped bean, a brand new prototype bean will be instantiated and then dependency injected into the singleton bean... but that is all. That exact same prototype instance will be the sole instance that is ever supplied to the singleton-scoped bean, which is fine if that is what you want.
However, sometimes what you actually want is for the singleton-scoped bean to be able to acquire a brand new instance of the prototype-scoped bean again and again and again at runtime. In that case it is no use just dependency injecting a prototype-scoped bean into your singleton bean, because as explained above, that only happens once when the Spring container is instantiating the singleton bean and resolving and injecting its dependencies. If you are in the scenario where you need to get a brand new instance of a (prototype) bean again and again and again at runtime.
Backwards compatibility note: specifying the lifecycle scope in XML
If you are referencing the 'spring-beans.dtd' DTD in a bean definition file(s), and you are being explicit about the lifecycle scope of your beans you must use the "singleton" attribute to express the lifecycle scope (remembering that the singleton lifecycle scope is the default). If you are referencing the 'spring-beans-2.0.dtd' DTD or the Spring 2.0 XSD schema, then you will need to use the "scope" attribute (because the "singleton" attribute was removed from the definition of the new DTD and XSD files in favor of the "scope" attribute).
To be totally clear about this, this means that if you use the "singleton" attribute in an XML bean definition then you must be referencing the 'spring-beans.dtd' DTD in that file. If you are using the "scope" attribute then you must be referencing either the 'spring-beans-2.0.dtd' DTD or the 'spring-beans-2.5.xsd' XSD in that file.

 The other scopes

The other scopes, namely requestsession, and global session are for use only in web-based applications (and can be used irrespective of which particular web application framework you are using, if indeed any). In the interest of keeping related concepts together in one place in the reference documentation, these scopes are described here.
Note
The scopes that are described in the following paragraphs are only available if you are using a web-aware Spring ApplicationContext implementation (such as XmlWebApplicationContext). If you try using these next scopes with regular Spring IoC containers such as the XmlBeanFactory or ClassPathXmlApplicationContext, you will get anIllegalStateException complaining about an unknown bean scope.

 Initial web configuration

In order to support the scoping of beans at the requestsession, and global session levels (web-scoped beans), some minor initial configuration is required before you can set about defining your bean definitions. Please note that this extra setup is not required if you just want to use the 'standard' scopes (namely singleton and prototype).
Now as things stand, there are a couple of ways to effect this initial setup depending on your particular Servlet environment...
If you are accessing scoped beans within Spring Web MVC, i.e. within a request that is processed by the Spring DispatcherServlet, orDispatcherPortlet, then no special setup is necessary: DispatcherServlet and DispatcherPortlet already expose all relevant state.
When using a Servlet 2.4+ web container, with requests processed outside of Spring's DispatcherServlet (e.g. when using JSF or Struts), you need to add the following javax.servlet.ServletRequestListener to the declarations in your web application's 'web.xml' file.
<web-app>
  ...
  <listener>
    <listener-class>org.springframework.web.context.request.RequestContextListener</listener-class>
  </listener>
  ...
</web-app>
If you are using an older web container (Servlet 2.3), you will need to use the provided javax.servlet.Filter implementation. Find below a snippet of XML configuration that has to be included in the 'web.xml' file of your web application if you want to have access to web-scoped beans in requests outside of Spring's DispatcherServlet on a Servlet 2.3 container. (The filter mapping depends on the surrounding web application configuration and so you will have to change it as appropriate.)
<web-app>
  ..
  <filter> 
    <filter-name>requestContextFilter</filter-name> 
    <filter-class>org.springframework.web.filter.RequestContextFilter</filter-class>
  </filter> 
  <filter-mapping> 
    <filter-name>requestContextFilter</filter-name> 
    <url-pattern>/*</url-pattern>
  </filter-mapping>
  ...
</web-app>
That's it. DispatcherServletRequestContextListener and RequestContextFilter all do exactly the same thing, namely bind the HTTP request object to the Thread that is servicing that request. This makes beans that are request- and session-scoped available further down the call chain.

 The request scope

Consider the following bean definition:
<bean id="loginAction" class="com.foo.LoginAction" scope="request"/>
With the above bean definition in place, the Spring container will create a brand new instance of the LoginAction bean using the'loginAction' bean definition for each and every HTTP request. That is, the 'loginAction' bean will be effectively scoped at the HTTP request level. You can change or dirty the internal state of the instance that is created as much as you want, safe in the knowledge that other requests that are also using instances created off the back of the same 'loginAction' bean definition will not be seeing these changes in state since they are particular to an individual request. When the request is finished processing, the bean that is scoped to the request will be discarded.

 The session scope

Consider the following bean definition:
<bean id="userPreferences" class="com.foo.UserPreferences" scope="session"/>
With the above bean definition in place, the Spring container will create a brand new instance of the UserPreferences bean using the'userPreferences' bean definition for the lifetime of a single HTTP Session. In other words, the 'userPreferences' bean will be effectively scoped at the HTTP Session level. Just like request-scoped beans, you can change the internal state of the instance that is created as much as you want, safe in the knowledge that other HTTP Session instances that are also using instances created off the back of the same'userPreferences' bean definition will not be seeing these changes in state since they are particular to an individual HTTP Session. When the HTTP Session is eventually discarded, the bean that is scoped to that particular HTTP Session will also be discarded.

 The global session scope

Consider the following bean definition:
<bean id="userPreferences" class="com.foo.UserPreferences" scope="globalSession"/>
The global session scope is similar to the standard HTTP Session scope (described immediately above), and really only makes sense in the context of portlet-based web applications. The portlet specification defines the notion of a global Session that is shared amongst all of the various portlets that make up a single portlet web application. Beans defined at the global session scope are scoped (or bound) to the lifetime of the global portlet Session.
Please note that if you are writing a standard Servlet-based web application and you define one or more beans as having global sessionscope, the standard HTTP Session scope will be used, and no error will be raised.

 Scoped beans as dependencies

Being able to define a bean scoped to a HTTP request or Session (or indeed a custom scope of your own devising) is all very well, but one of the main value-adds of the Spring IoC container is that it manages not only the instantiation of your objects (beans), but also the wiring up of collaborators (or dependencies). If you want to inject a (for example) HTTP request scoped bean into another bean, you will need to inject an AOP proxy in place of the scoped bean. That is, you need to inject a proxy object that exposes the same public interface as the scoped object, but that is smart enough to be able to retrieve the real, target object from the relevant scope (for example a HTTP request) and delegate method calls onto the real object.
[Note]Note
You do not need to use the <aop:scoped-proxy/> in conjunction with beans that are scoped as singletons or prototypes. It is an error to try to create a scoped proxy for a singleton bean (and the resulting BeanCreationException will certainly set you straight in this regard).
Let's look at the configuration that is required to effect this; the configuration is not hugely complex (it takes just one line), but it is important to understand the “why” as well as the “how” behind it.
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:aop="http://www.springframework.org/schema/aop"
       xsi:schemaLocation="http://www.springframework.org/schema/beans 
           http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
           http://www.springframework.org/schema/aop 
           http://www.springframework.org/schema/aop/spring-aop-3.0.xsd">

    <!-- a HTTP Session-scoped bean exposed as a proxy -->
    <bean id="userPreferences" class="com.foo.UserPreferences" scope="session">
          
          <!-- this next element effects the proxying of the surrounding bean -->
          <aop:scoped-proxy/>
    </bean>
    
    <!-- a singleton-scoped bean injected with a proxy to the above bean -->
    <bean id="userService" class="com.foo.SimpleUserService">
    
        <!-- a reference to the proxied 'userPreferences' bean -->
        <property name="userPreferences" ref="userPreferences"/>

    </bean>
</beans>
To create such a proxy, you need only to insert a child <aop:scoped-proxy/> element into a scoped bean definition (you may also need the CGLIB library on your classpath so that the container can effect class-based proxying; you will also need to be using XML Schema-based configuration). So, just why do you need this <aop:scoped-proxy/> element in the definition of beans scoped at the request,sessionglobalSession and 'insert your custom scope here' level? The reason is best explained by picking apart the following bean definition (please note that the following 'userPreferences' bean definition as it stands is incomplete):
<bean id="userPreferences" class="com.foo.UserPreferences" scope="session"/>

<bean id="userManager" class="com.foo.UserManager">
    <property name="userPreferences" ref="userPreferences"/>
</bean>
From the above configuration it is evident that the singleton bean 'userManager' is being injected with a reference to the HTTP Session-scoped bean 'userPreferences'. The salient point here is that the 'userManager' bean is a singleton... it will be instantiated exactly once per container, and its dependencies (in this case only one, the 'userPreferences' bean) will also only be injected (once!). This means that the 'userManager' will (conceptually) only ever operate on the exact same 'userPreferences' object, that is the one that it was originally injected with. This is not what you want when you inject a HTTP Session-scoped bean as a dependency into a collaborating object (typically). Rather, what we do want is a single 'userManager' object, and then, for the lifetime of a HTTP Session, we want to see and use a 'userPreferences' object that is specific to said HTTP Session.
Rather what you need then is to inject some sort of object that exposes the exact same public interface as the UserPreferences class (ideally an object that is a UserPreferences instance) and that is smart enough to be able to go off and fetch the real UserPreferences object from whatever underlying scoping mechanism we have chosen (HTTP request, Session, etc.). We can then safely inject this proxy object into the 'userManager' bean, which will be blissfully unaware that the UserPreferences reference that it is holding onto is a proxy. In the case of this example, when a UserManager instance invokes a method on the dependency-injected UserPreferences object, it is really invoking a method on the proxy... the proxy will then go off and fetch the real UserPreferences object from (in this case) the HTTP Session, and delegate the method invocation onto the retrieved real UserPreferences object.
That is why you need the following, correct and complete, configuration when injecting request-session-, and globalSession-scoped beans into collaborating objects:
<bean id="userPreferences" class="com.foo.UserPreferences" scope="session">
    <aop:scoped-proxy/>
</bean>

<bean id="userManager" class="com.foo.UserManager">
    <property name="userPreferences" ref="userPreferences"/>
</bean>
Choosing the type of proxy created
By default, when the Spring container is creating a proxy for a bean that is marked up with the <aop:scoped-proxy/> element, a CGLIB-based class proxy will be created. This means that you need to have the CGLIB library on the classpath of your application.
Note: CGLIB proxies will only intercept public method calls! Do not call non-public methods on such a proxy; they will not be delegated to the scoped target object.
You can choose to have the Spring container create 'standard' JDK interface-based proxies for such scoped beans by specifying 'false' for the value of the 'proxy-target-class' attribute of the <aop:scoped-proxy/> element. Using JDK interface-based proxies does mean that you don't need any additional libraries on your application's classpath to effect such proxying, but it does mean that the class of the scoped bean must implement at least one interface, and all of the collaborators into which the scoped bean is injected must be referencing the bean via one of its interfaces.
<!-- DefaultUserPreferences implements the UserPreferences interface -->
<bean id="userPreferences" class="com.foo.DefaultUserPreferences" scope="session">
    <aop:scoped-proxy proxy-target-class="false"/>
</bean>

<bean id="userManager" class="com.foo.UserManager">
    <property name="userPreferences" ref="userPreferences"/>
</bean>

1 comment:

  1. largest companies by market cap. More than $1 trillion worth of mutual fund assets could be converted into ETFs in the coming decade also per Bloomberg and Citigroup and which acted as the transfer agent for the conversion and believes that $21 trillion mutual fund industry could consist mostly of ETFs within the next decade. abbott market cap

    ReplyDelete

Unity Top Download

Latest post

An Introduction to Hybris from basics

An Introduction to Hybris from basics:  -- ecommerce site and PCM(Product content Management) solutions. eg. croma website.  -- having sear...

Popular posts